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Abstract. Because of the flat initial shape of the QGP in a heavy-ion collision, the momentum distribution
becomes anisotropic after a short time. This leads to plasma instabilities, which may help explain how the
plasma isotropizes. We explain the physics of instabilities and give the latest results of numerical simulations
into their evolution. Non-Abelian interactions cut off the size to which the soft unstable fields grow, and
energy in the soft fields subsequently cascades towards more ultraviolet scales. We present first results for
the power spectrum of this cascade.

PACS. 12.38.Mh Quark-gluon plasma – 11.10.Wx Finite-temperature field theory – 11.15.Ha Lattice
gauge theory

1 Introduction

When relativistic nuclei collide, they leave behind a
plasma of quarks and (mostly) gluons which starts out
in a flat pancake-shaped region of space. This simply re-
flects the fact that the nuclei are approximately spherical
in their rest frames, but the Lorentz boost of their mo-
tion compresses them along the beam axis into nearly flat
sheets. Further, if the collision is not perfectly head-on
but occurs at a finite impact parameter (as is usually the
case), the initial region is not circular in the transverse
plane, either; it looks instead like a “flat almond,” as de-
picted in fig. 1.
This flat initial shape will quickly change, as the region

containing quark-gluon plasma expands into the space
around it. If the quarks and gluons stream freely (as
they would, at least initially, if the coupling αs were truly
small), then “momentum selection” will make the plasma
locally highly anisotropic, see fig. 2.
In the absence of rescattering, the momentum distri-

bution reaching detectors would be isotropic, since the ini-
tial distribution of particles was. If rescattering is efficient,
then the momentum distribution relaxes to be isotropic,
locally at each point, and with respect to the local rest
frame, which is a moving frame with respect to the sys-
tem as a whole. For instance, in the right-hand picture
in fig. 2, the particles on the right side of the almond
would redistribute to be isotropic with respect to their
(rightward moving) local rest frame. Because the initial
shape is anisotropic, there are more left- and right-moving
“cells” of plasma than up- and down-moving “cells”. The
p2
⊥
summed over particles gets one contribution from the
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Fig. 1. Left: pancake-shaped nuclei just before colliding.
Right: resulting “flat-almond”–shaped region of quark-gluon
plasma.

p2
⊥
of the particle relative to its cell, and one from the p2

⊥

of the cell. The first is equal between p2
x and p

2
y if rescat-

tering isotropizes locally. The second favors the direction
which was initially the skinny direction of the almond.
Therefore, the momentum distribution of final particles
will favor the initially thin axis of the almond, if rescat-
tering occurs. This is called elliptic flow, and it is observed
to be nearly maximal in heavy-ion collisions [1,2], that is,
nearly at the value obtained if rescattering is perfectly
efficient.
It has been argued [3] that the elliptic flow observed

in heavy-ion collisions is incompatible with the plasma
being weakly coupled. That is, perturbative treatments
of the QGP [4] seem to be at a loss to explain how it
can show as much elliptic flow as it seems to1. However,
before discarding the idea of weak coupling, we should
first make sure that the weak-coupling treatments were
done correctly. We argue that weak-coupling treatments

1 Inclusion of number changing processes may change this
conclusion [5]. This is an interesting development, though we
are concerned that those treatments do not include virtual
(suppressing) corrections to the 2↔ 2 cross-section.
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Fig. 2. Left: momentum selection along the beam axis: forward-moving particles end up in front, backwards movers in back,
and only lateral movers remain in the middle. Right: the same applies in the transverse plane.

to date leave out the dominant physics, which has to be
understood before such strong claims can be made with
confidence.

2 Plasma instabilities

Consider first what the traditional treatment of scattering
in a plasma is. The particles in the plasma are considered
to undergo 2 ↔ 2 scattering. The scattering rate has a
(Coulombic) soft divergence, dσ ∼ d2q⊥/q

4
⊥
. To find out

how much this isotropizes the plasma one must multiply
by q2 to get the transport cross-section, but this is still
log divergent:

σtransport ∝ g4

∫
q2dq2 1

q4
. (1)

This means that it is essential to include plasma correc-
tions to the scattering. In equilibrium, this leads to a finite
result [6]:

σtransport ∝ g4

∫
q2dq2 1

(q2 +Π)2

∼ g4

∫
q2
⊥
dq2
⊥

1

q2
⊥
(q2
⊥
+m2

D)
. (2)

(Here Π represents the self-energy and m2
D is the Debye

mass squared.) Plasma effects cut off the small-angle scat-
tering rate. However, Π was derived using the isotropic
equilibrium result for the self-energy. For a nonequilib-
rium plasma, one should recompute the self-energy for
the nonequilibrium, anisotropic particle distribution. The
relevant self-energies are known [7], but when they are
inserted in the scattering calculation, they lead to propa-
gators which are singular at finite momentum and give an
apparently divergent answer for σtransport [8].
We should examine the self-energy more carefully. The

leading “hard loop” [9,10] self-energy represents the cur-
rent induced by the coherent response of the plasma to
an infrared gauge field. The simplest example to think
about is a plasma oscillation, which we will now describe
for an Abelian (E&M) plasma. Suppose that there is a
spatially uniform E field in the plasma. Each + charge
will be deflected into the direction of the E field, each −

charge will be deflected against it. For a + and − charge
at the same location and direction, the + moves in the
E-direction and the − against that direction, leading to
a small dipole. Each individual deflection is small, but
there are a lot of particles and the deflections build up
over time. The individual dipoles add up into an E field
opposing the original one, which soon cancels off the ini-
tial E field completely. But the particles keep following the
deflected trajectories, so the dipoles continue to grow, and
the total E field reverses sign. Then the particles deflect
back the other way, leading back to the starting configu-
ration. The E field will oscillate back and forth in sign at
a characteristic frequency ωpl determined by the density
and deflectability of the charges in the plasma.
Now, consider a more complex and relevant example,

shown in fig. 3. Suppose an anisotropic plasma has all
charges flow along one “beam” direction. Consider a seed
magnetic field with k and B orthogonal to the beam. The
particles deflect in the magnetic field; the + charges are
focused where the − charges are defocused, leading to a
net current. The current is exactly the one which supports
the magnetic field which started the trouble. Since the
deflection grows with time, the current will become large
enough to generate and even strengthen B. This will lead
to greater charge deflection, greater current, and greater
B. This is an exponential instability, called theWeibel in-
stability, known in the plasma physics community since
the 1950s [11]. Though we discussed the case of maxi-
mal instability, the same process is present whenever the
plasma is anisotropic. The time scale for this instability to
grow is short: if typical momenta are O(T ) and the par-
ticle density is O(T 3), but the momentum distribution is
anisotropic, the growth rate of the instability is γ ∼ gT ,
to be compared with the large angle particle scattering
rate (in equilibrium) of Γ ∼ g4T . Therefore the B fields
become large on a scale shorter than any scattering time
scale in the plasma. In fact, it is generally faster than any
dynamical time scale in the plasma, or the system age [12],
and must be considered in understanding the evolution of
the plasma.

3 Kinetic theory treatment

We would like to address plasma instabilities in the con-
text of the full QGP evolution at realistic coupling. That
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Fig. 3. Left: magnetic field and particle distribution which is unstable, and the deflection of + charges. Right: deflection of all
charges, and induced currents. The current is exactly the one which supports the magnetic field.

is a big task. We take instead the warmup task of un-
derstanding the behavior in the limit of weak coupling
αs ¿ 1, some time after the collision when the plasma
has become anisotropic, and working only in a local patch
of plasma which is statistically spatially uniform. The key
is that the particle density n becomes smaller than the
nonperturbative size, n ¿ p3/αs, with p the typical mo-
mentum of a hard particle. Therefore the screening scale
m2 ∼ αn/p becomes m¿ p; there is a separation of scale
between the wave number of the unstable modes and of the
dominant excitations in the plasma. This allows a separa-
tion of the degrees of freedom. The soft modes will achieve
large occupancy due to the instability, and may therefore
be treated as classical fields. The dominant modes have
large momentum and may therefore be treated as parti-
cles. This allows a Vlasov equation treatment.
In equilibrium, an electric field polarizes the plasma,

but a magnetic field merely rotates the isotropic distribu-
tion of momenta, which does not induce a net current. For
an anisotropic plasma, though, the distribution of parti-
cles,

Ω(v) ≡
1∫

d3pf(p)/p

∫
d3p

p
f(p)δ(p̂− v) (3)

is not isotropic. (Ω(v) represents the number of particles
moving in the v-direction, weighted by their “bendabil-
ity” 1/p and normalized to average to 1 over angles.) This
means that any electromagnetic field can induce a current.
In particular, defining the net color of particles moving in
the v-direction at point x asW a(x,v), the joint equations
for W and Aµ are

DtW
a(x,v) = −v ·DW a(x,v) +m2

∞
Source , (4)

Source=2Ω(v)v ·Ea−Ea ·
∂

∂v
Ω(v)−F a

ijvi
∂Ω(v)

∂vj
, (5)

DµF
νµ = Jν =

∫
v

vν W (v). (6)

The first equation describes the (covariant) free propaga-
tion of particles, vµDµW = 0, modified by the induced
current from polarizing the mean (colorless) distribu-
tion of particles. The parameter m2

∞
= g2Cf

∫
d3pf(p)/p

equals m2
D/2 in equilibrium and gives the polarizability of

the medium. The second line shows how much E and B

fields polarize the medium. The last line is the Yang-Mills
equation with J determined by W .
These equations can be solved two ways. They can be

handled analytically in the context of weak-field pertur-
bation theory. This has been pursued quite far [13,12].
The conclusion is that any anisotropy causes exponen-
tial growth, and O(1) anisotropy (Ω deviating by O(1)
amounts from being isotropic) leads to an exponentia-
tion time γ ∼ m∞. At any time later than the forma-
tion time of the plasma, multiple exponentiation times
have occurred, and one must deal with the fully nonlin-
ear equations. These are not tractable analytically, and we
must use the other technique for solving these equations:
numerical implementation.
The classical Yang-Mills equations can be solved non-

perturbatively in real (Minkowski) time on the lattice via
existing techniques [14]. The W fields have been added to
such a lattice simulation for an isotropic plasma in [15].
New difficulties emerge in this treatment, because W a is
a function of v as well as x; both must be discretized
somehow to make the system finite. Reference [15] does
so by expanding functions of v in spherical harmonics and
truncating at a finite `max. It is also possible to discretize
the sphere directly [16]. Here we will present results using
the `max cutoff technique, extended to anisotropic Ω [17].
We work in SU(2) rather than SU(3) for simplicity; we
expect the qualitative behavior to be the same, and the
simulations remain at the level of understanding the gross
features rather than the quantitative details at this time.

4 Numerical results

We summarize results obtained jointly with Peter Arnold
and Larry Yaffe, which have recently been presented in
greater detail [17,18].
If the gauge fields are initially small, they grow expo-

nentially, as expected perturbatively, until they are non-
perturbatively large. At this point, the growth in the
gauge field energy changes over to linear behavior, see
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Fig. 4. Top: energy growth from small seed fields is exponen-
tial at first but becomes linear when the fields become non-
perturbative. Bottom: for nonperturbative seeds, the growth
is always linear; but the energy gain is in the higher k modes
only, as revealed by smearing.

fig. 4. What does this behavior represent? By “smearing”
the fields to remove high-k components, we can demon-
strate (same figure) that the infrared fields do not grow
any more, but the energy goes into ever more ultraviolet
degrees of freedom.
This behavior is confirmed by looking at the power

spectrum of the electric and magnetic energy in Coulomb
gauge. In a system of quasiparticles, the occupancy would
obey

f(k) =
〈E2(k)〉

2(N2
c − 1)k

=
〈k2A2(k)〉

2(N2
c − 1)k

, (7)

where 2(N2
c − 1) just counts degrees of freedom in E and

B. One can therefore define fE and fB as the occupancy as
determined by the electric and magnetic fields by imposing
this expression. This is just a way of parameterizing the
power spectrum of E and A; but if the degrees of freedom
are actually behaving as light quasiparticles, we should
observe fB ' fE .
Results for fE and fB are shown in fig. 5. The IR

contains nonperturbatively large fields which are quasis-
tationary in time. In the UV, the behavior is that of quasi-
particles, which become more numerous with time, grow-
ing towards a steady state power law spectrum with a
spectral index of approximately f ∝ k−2.

Fig. 5. Top: Coulomb gauge spectrum from E (lower at left)
and A (higher at left) fields, at a series of times from early
(bottom at right) to late (top at right). Bottom: the same,
with a suggestive power law fit superimposed. It appears that
f(k) ∝ k−2.

While the IR behavior is quasistationary, it is dy-
namical, not quasistatic. Chern-Simons number diffuses
(not shown), indicating that nonperturbative physics is
involved and that there is no long time scale coherence to
the soft gauge field configuration.

5 Conclusions

The expansion of the QGP in a heavy-ion collision should
lead to a locally anisotropic system. Within the weak-
coupling expansion, this implies that plasma instabilities
should develop. Plasma instabilities imply a transfer of
energy from the “hard” typical excitations to large long-
wavelength “soft” non-Abelian magnetic fields. The sub-
sequent evolution of these soft fields requires nonpertur-
bative tools to uncover. In an αs ¿ 1 treatment, where
the separation between hard and soft scales is paramet-
rically large, we find an intriguing cascade phenomenon.
Energy is taken from the hard fields into the soft fields.
However, non-Abelian interactions between soft fields keep
the would-be unstable fields in a quasisteady state. In-
stead the energy cascades into classical fields with wave
numbers k larger than the unstable field scale, m∞. The
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cascade towards the ultraviolet develops with a power law
spectrum f ∝ k−α with α ' 2. This value of the spectral
index implies that the cascade particles do not dominate
the screening and do not serve as the dominant source of
scattering events.
We do not fully understand the implications of these

results for thermalization of the QGP even in the case of
weak coupling, much less at realistic couplings for current
experiments. However, the physics is rich and intriguing
and deserves further study.
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